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Upper Cutoff Frequency of the Bound Wave
and New Leaky Wave on the Slotline

Ján Zehentner,Senior Member, IEEE,Jan Mach́ač, and Maurizio Migliozzi

Abstract—Printed-circuit lines exhibit interesting behavior due
to leakage of power. We have attempted to work toward a more
profound understanding of uniplanar circuit properties when it
comprehends planar transmission lines. Our work has focused
on the slotline. We realized that the solution of its dispersion
equation is multivalued. This enabled us to identify and report a
new leaky wave on the slotline. The leaky wave brings down the
upper cutoff frequency of the bound wave propagating over the
slotline due to overlapping of the bound- and leaky-mode regions.
For this case, we present some simple closed-form formulas
providing this frequency limit when there is a frequency gap or
when simultaneous propagation of the bound and the first or
second leaky wave occurs. Propagation of the bound and leaky
wave at the same time is a straightforward consequence of the
multivalued nature of the solution of the dispersion equation.
Evolution of the real and complex improper solutions of the
equation in dependence on slotline dimensions demonstrates this
clearly. We believe that conclusions drawn for the slotline also
hold generally for other printed-circuit lines.

Index Terms— Cutoff frequencies, electromagnetic surface
waves, leaky waves, operation modes on slotlines, printed-circuit
lines, slotlines.

I. INTRODUCTION

PLANAR transmission lines used in microwave,
millimeter-wave, and optical integrated circuits have

been investigated intensively over the last 15 years [1]–[7].
These lines are mostly fully or partly open. Their open nature
may cause leakage of power. For this reason, besides attempts
to minimize natural losses, attention has been paid to leakage
that can result in crosstalk between neighboring components
or portions of the circuit, in lowering of their quality factors,
or in outright loss of power. Leakage of power strongly
depends on the cross section of the line, its dimensions, and
the frequency. In any case, leakage has a significant effect
on circuit performance, which can deteriorate, especially in
the millimeter-wave band. We shall restrict ourselves in this
paper to leakage into surface waves on the open slotline.

Shigesawa, Tsuji, and Oliner have summarized earlier in-
vestigations into effects which may occur in open printed-
circuit lines and have explained in detail their comprehensive
conception in [7]. Essentially, all treatises about leakage effects
are based on proper integration of the matrix elements involved
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in the line dispersion equation having the appearance of
determinant.

When speaking about leakage into surface waves on the
slotline, we have to take into account earlier research results
[7]. On a slotline with a relatively narrow slot, the guided
dominant mode is purely bound at frequencies below the so-
called spectral gap. The propagation constant of the bound
wave is real. Within the spectral gap, solution of the dispersion
equation is either real or complex, but in any case nonphysical.
Above the spectral gap, the leaky mode can propagate, and its
propagation constant is complex. Continuous increase of the
slotwidth dramatically alters the dispersion curves within the
spectral gap, and for a sufficiently wide slot, the bound mode
and the leaky mode propagate simultaneously. Consequently,
the spectral gap now disappears. The frequency band of this
simultaneous propagation may be fairly wide. The recently
discovered new improper real solution of the dispersion equa-
tion serves to explain continuous passing from the regime with
a spectral gap to simultaneous propagation of the bound and
leaky wave due to the change of slotline dimensions [6].

In this paper, we will deal with a new previously uniden-
tified leaky wave on the slotline, with its influence on the
upper limit of the dominant bound-wave frequency band,
and will present closed-form formulas for this limit suitable
for computer-aided design (CAD). The new leaky wave is
associated with the leakage into both the and
surface waves propagating over grounded dielectric slab. We
consider our finding that this wave brings down the upper
cutoff frequency of the dominant bound wave, especially on
the narrow slotwidth slotline, to be a contribution to the
general discussion on the characteristics of the open slotline.
In this case, the regime with simultaneous propagation of
the bound wave and new leaky wave dominates over the
regime with the spectral gap. First of all, this concerns slotlines
with lower characteristic impedance, particularly on the higher
permittivity substrate. Additionally, evolution of both the real
and the complex improper solutions of the dispersion equation
corresponding to the new leaky wave in dependence on the
slotline dimensions shows changes of the nonphysical and
physical solutions. On a slotline with a wider slot, the new
leaky wave has a frequency gap in which the solution is
nonphysical. Physical improper complex leaky-mode solutions
encompass this frequency gap on the left- and right-hand sides.
The left-hand-side region of the physical improper complex
solution is mostly narrow. Conclusions resulting from the
solution of the dispersion equation regarding leakage into the

and surface waves can also be extended to leakage
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Fig. 1. Cross section of the slotline.

into the higher surface waves. Whether such leakage is worth
taking into consideration is a question of each particular case,
specified by the geometric and material parameters of the
line. The factor that controls this thinking from the practical
viewpoint is the magnitude of the frequency at which the
respective leaky wave sets in. Generally, it is important to
know the dispersion characteristics of planar transmission lines
in order to suppress or remove their unwanted leakage while
making an appropriate choice for their geometrical dimensions
and material parameters.

II. THE NEW SECOND LEAKY WAVE ON THE SLOTLINE

A cross section of the investigated slotline, the denotation
of its dimensions, and the placement of the axis are depicted
in Fig. 1. We have analyzed the open slotline by the method of
moments, modified as in the Galerkin testing procedure in the
spectral domain with successive complex root searching. The
integration path in the spectral domain was deformed from
the real axis to include the residue contributions associated
with propagation of the corresponding surface waves. The
accuracy of our calculation was checked by comparing the
normalized phase constant and the normalized leakage
constant as a function of the normalized frequency
where and , respectively, computed for

and when with their plotting first
published in [8, Figs. 3, 4] and with additional relevant [7,
Figs. 5, 10–16]. Within the readability of these figures, no
differences were found between those results and our own.
Thus, the program provides us with all solutions known and
published until now [7].

Let the field be expressed in terms of the electric and
magnetic Hertz vectors parallel to the-axis and propor-
tional to where is the propagation constant in the
-direction. Thus, corresponding electric and magnetic

potentials describe the TM and TE fields with respect to
the -direction, superposition of which represents the total
field. Taking their Fourier transforms with respect to the

-coordinate and substituting them separately into the likewise
transformed Helmholtz equation, we obtain an ordinary one-
dimensional wave equation. Its solution or
is known in the spectral domain. Satisfaction of the boundary
conditions in the plane of the metallization results in a couple
of equations which are solved by the Galerkin method. The
procedure leads to a system of linear homogeneous equations
for unknown amplitudes of the basis functions modeling the
field within the slot. A nontrivial solution is obtained by
setting its determinant to zero. The determinantal equation
(known as the dispersion equation, and usually written in

Fig. 2. The normalized phase and leakage constants for the slotline with
w=h = 0:4 and "r = 2:25 as a function of normalized frequency(h=�o).
(—): 1st and 2nd improper complex. (- - - -): 1st and 2nd improper real.

matrix notation), controls the dispersion characteristics of
the line. The solution of this determinantal equation by a
complex root-finding routine provides the propagation constant

searched for where and are the phase and
the attenuation constant, respectively. The matrix element of
dispersion equation has the form

(1)

where are Fourier transforms of the basis
functions , while stand for and/or
, and distinguish particular functions from each other.

We have used customary basis functions fulfilling the edge
conditions in accordance with [9]. is the Green’s
function in a spectral domain comprising two terms. The first
term corresponds to and the latter to potential. Both
terms may have poles. In dependence on the choice of poles
taken into consideration, we obtain a corresponding solution
of the dispersion equation [10].

Several distinct situations can occur on the lossless slotline.
When poles of lie only at the imaginary axis of the
complex plane , and the integration path in
is identical with the real axis, the solution of the dispersion
equation is proper real and belongs to the dominant bound
wave, as is seen in Fig. 2. The frequency, at which the
dispersion curve of the bound wave touches the curve of the

surface mode and determines the upper cutoff
frequency of pure dominant bound-wave propagation over the
slotline. The propagation constant of the surface wave
is .

When the path of integration in (1) is again equal to the
real axis, but the pole of lying at the imaginary
axis is considered by its residue, the improper real solution
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occurs. It starts at , then grows, and later turns back to
lower frequencies. The higher improper real solution, denoted
in [6]–[8] as “a new improper real solution” is obtained in the
same way as the first solution, but has a greater magnitude.
It is the second term of a double-valued solution, the first
term of which is the previous lower improper real solution.
Within the spectral gap quantified by and , the improper
complex solution corresponding to the leaky mode splits off
from the improper real solution. The pole of is now
complex. Its residue contributes to the integral taken along the
real axis. However, within the spectral gap the solutions are
nonphysical. At frequency when begins to be lower than

, the physical improper complex solution joined with the
leaky wave sets in. Integration in (1) is performed in the same
way as in the preceding case.

However, besides the solutions quoted above, the dispersion
equation of the slotline also has a further solution that is new
and interesting. Let us denote the already known complex
solution as the first leaky mode, and the new complex solution,
which we are reporting here, as the second leaky mode.
Subscript 1 will denote the real improper solution related
with the associated surface wave and, consequently, also
with the first leaky wave. Similarly, subscript 2 will indicate
quantities related with the associated and surface
waves and with the corresponding second leaky wave.

The behavior of the second leaky wave is also illustrated
in Fig. 2, and belongs to the slotline taken over from [8].
The solution for the second leaky wave is obtained when
the integration path of in (1) again lies at the real axis,
but both the and the poles of , which are
now complex, are accounted for in terms of their residues.
This solution sets in at , the frequency when the second
improper complex solution splits off from the second improper
real solution. The second improper real solution occurs first at
frequency , identical with cutoff of the surface mode.
Now the poles of are imaginary. It is seen that the
second improper real solution associated with the second leaky
wave breaks off from the improper real solution belonging to
the first leaky wave. Then the solution goes down, crosses
the bound-wave curve, and touches the phase constant line of
the surface wave. Up to this point, the imaginary poles

and have been accounted for. Afterwards, when
only the imaginary pole is captured, the solution turns
back upward and ends at the bound-wave solution, again at
frequency . The solutions keep their nature when passing
from the first to the second leaky wave. The second higher
improper real solution breaks off from the first higher improper
solution again at the cutoff frequency of the surface
mode. Between and , at which point the phase constant
of the second leaky wave becomes equal to that of the
surface wave, the leaky wave is nonphysical in the sense of the
generalized condition of leakage [11]. By chance,
is here only slightly lower than , the upper cutoff
frequency of the pure dominant bound wave. The conventional
frequency gap from to now disappears due to the
presence of the second leaky wave. At frequencies higher than

, energy can leak into the and surface waves.
Leakage to the surface wave occurs at a lower angle

than to the surface wave. The corresponding leakage
constant is greater than .

To get a better insight into the second leaky wave, its field
will be investigated in detail. The electric and
magnetic fields perpendicular to the substrate can
be written in the spectral domain in terms of two tangential
electric-field components , defined within the
slot and specified by proper basis functions , ,
as in (1). The subscripts 1–3 now indicate the respective space,
i.e., , , and . Accordingly,

(2)

(3)

(4)

(5)

(6)

(7)

where

(8)

(9)

(10)

(11)

and is substrate permittivity. The fields in the substrate
, and in the air , have complex poles ,

associated with and potentials, respectively. Their
positions follow from (12) for and from (13) for
when

(12)

(13)

Let us denote

(14)

(15)

After substituting (14) and (15) into (12) and (13), dispersion
equations of the TM and TE surface waves propagating over
a grounded dielectric slab are obtained [12]. Note that,

are poleless functions.
Far aside from the slot, the field must have the character

of a surface wave. A grounded substrate supports TM and
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TE modes [12]. Their propagation constants and
are the common solution of (12) and (14) and (13) and (15),
respectively. Assuming propagation in the-direction, then

, , constitute TM modes while , , constitute
TE modes. Regardless of the direction of propagation, TM
surface modes can be described byand, similarly, can
describe TE surface modes.

To get the field in the space domain, the backward Fourier
transform

(16)

of (2)–(7) is necessary. can be decomposed into
three terms as follows:

(17)

assuming that has only one pair of poles
is a regular function, and

are residues of the function at the poles
and at a given position.

Poles are either complex or imaginary. Let us substitute
(17) into (16). Integration in (16) along the real axis in the
plane results in the field always decaying with increasing,
i.e., we get the bound wave. To get an improper wave with
increasing amplitude in the -direction, the integration path
must be modified, as seen in the contourin Fig. 3(a) and
(b). Now

(18)

The first term provides the bound wave whereas the second
term represents the superposition of two waves. One of them
with decreasing and the second one with growing amplitude
when tends to infinity. The latter is an improper wave since
it does not fulfill the radiation condition at infinity. Far from
the slot, the field can be approximated by a wave

(19)

propagating obliquely to the right from the slot and by another
wave

(20)

propagating obliquely to the left from the slot. Their propaga-
tion constants in the-direction are equal to the pole location

. Propagation constants and are
complex. Let us denote as or , which for a lossless

Fig. 3. Integration path for (18) in the plane�.

substrate is real. After decomposition and rearrangement, (14)
and (15) gives

(21)

(22)

The phase constant of and in the - and -directions
is and , respectively, so that the phase constant in the
direction of their propagation is

(23)

Both these waves propagate at angleread from the -axis

(24)

Equation (24) removes the approximation sign in [4, eq. (2)].
Mostly and are considerably less than. Consequently,
the difference between calculated according to (24) and
according to [4, eq. (2)] is insignificant. However, for our
examples shown in Figs. 4, 7, and 8, this difference amounts to
0.60 , 0.74 , and 1.66, respectively. Readability in the origi-
nal larger size figures is better than 0.5. Thus, the transversal
field distribution shown in Figs. 4, 7, and 8 confirms the
validity of (24). The idea quoted above holds analogously for

.
with complex poles represents a leaky

wave that at a great distance from the slot continuously
modifies and passes on the TM surface wave. Similarly,

has poles and passes on the TE surface
wave when is sufficiently far away from the slot. On the
other hand, and have no poles. Con-
sequently, this field decays in any case with growingsince
the metallization screens the field on its opposite side.

A theoretical reason for an existence of the first leaky wave
has been given above. It is related with the poles
corresponding to the surface mode. It leaks at an angle
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Fig. 4. The first leaky-wave contour lines of the electric-field component
Ey2 perpendicular to the substrate surfacey = 0 plotted in thexz-plane
for the slotline withw=h = 0:5, "r = 2:25, andh=�o = 0:45. �1 is the
angle of leakage.

Fig. 5. The first leaky-wave components of the electricEy2 and magnetic
Hy2 field perpendicular to the substrate surfacey = 0 in the planez = 0

for the same slotline as in Fig. 4.

Fig. 6. The first leaky-wave contour lines of the magnetic field component
Hy2 perpendicular to the substrate surfacey = 0 plotted in thexz-plane for
the same slotline as in Fig. 4.

according to (24) where . The contour plot of
its electric field perpendicular to the substrate surface
is shown in Fig. 4. The greater the line density, the higher
the field strength. Since is the pole of , and not
the pole of , the component , perpendicular to the
substrate surface, decreases with growing, as is seen in
Fig. 5, and as documented again by the contour plot in Fig. 6.

As we have mentioned above, the second leaky wave occurs
when poles related to and potentials, i.e.,

Fig. 7. Contour lines ofEy2 similar to those in Fig. 4, but now for the
second leaky wave on the same slotline.

Fig. 8. The second leaky-wave contour lines ofHy2 perpendicular to the
substrate surfacey = 0 plotted in thexz-plane for the same slotline as in
Fig. 4.

and , are taken into consideration. Besides the bound
term, the total field consists of the and surface
waves. They both have the same propagation constantin
the -direction, but different propagation constants in the

-direction. Their amplitudes are proportional to the residues
at the and poles. The corresponding angles of
propagation also differ as follows:

(25)

(26)

as is seen in the contour plots in Figs. 7 and 8. The magnitudes
of these angles agree with those read in Figs. 7 and 8 when
leakage constant is accounted for in (25) and (26). Fig. 9
confirms a feeling that now both and surface waves
could occur far away from the slot.

When increases (e.g., to 0.5), is distinctly lower than
(see Fig. 10), and within the frequency gap fromto

the phase constant of the second leaky wave is lower than.
Here, the solution is nonphysical sincedoes not comply with
the generalized condition of leakage [11]. Now the influence
of the first leaky wave can assert itself. Above the frequency
gap, i.e., above , the second leaky wave is again physical
and may exist simultaneously with the first leaky wave.

The newly revealed characteristics of the second leaky
wave are more expressive on the higher permittivity substrate,
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Fig. 9. A plot of the electricEy2 and magneticHy2 field components of
the second leaky wave perpendicular to the substrate surfacey = 0 in the
planez = 0 similar to that in Fig. 5 for the same slotline as in Fig. 4.

Fig. 10. A plot similar to that in Fig. 2, but for a wider slotwidthw=h = 0:5.
(—): 1st and 2nd improper complex. (- - - -): 1st and 2nd improper real.

e.g., when , ( mm and
mm) (see Fig. 11). Now the overlapping interval

of simultaneous propagation of the bound and the second
leaky wave from GHz to GHz is
sufficiently significant for practical purposes. The second leaky
wave has much greater influence on the behavior of the slotline
of a narrower slotwidth (see Figs. 2, 11), while for a wider
slotwidth its influence is negligible since and are too
close together (see Figs. 10 and 12–15).

III. D EPENDENCE OFSECOND LEAKY-WAVE

SOLUTIONS ON SLOTLINE DIMENSIONS

It is interesting to observe how the dispersion characteristics
of the second leaky wave change with the normalized slotline
dimension . Their coupling to characteristics of the first
leaky wave at and above the cutoff frequency of the

Fig. 11. A plot similar to that in Fig. 2, but for a narrower slotwidth
w=h = 0:236 and higher substrate permittivity"r = 10:8: (—): 1st and
2nd improper complex. (- - - -): 1st and 2nd improper real.

surface wave demonstrates the multivalued nature and the
completeness of the solution of the dispersion equation.

The dispersion characteristics of a slotline vary with increas-
ing relative dimension . The sequence of charts in Figs. 2,
10, and 12–15 demonstrates this objectively. Their common
feature is that the second solution (either improper real or
improper complex) always sets in at, the cutoff frequency
of the surface wave, and has the same value as the first
solution at this splitoff point. When the solution associated
with the first leaky wave has an improper real solution at
frequency , the second solution also breaks away like the
improper real (see Figs. 2, 12, and 13). Similarly, the improper
complex solution of the second leaky mode splits off from the
complex solution of the first leaky wave, i.e., this concerns
both the phase and leakage constant (see Figs. 14 and 15).

Figs. 10 and 12–15 give evidence that the second leaky
wave does not make itself useful on wide slotwidth slotlines.
The first leaky wave dominates and controls their dispersion
characteristics. A narrow slot offers a greater chance to excite
the second leaky wave, as in Fig. 2 and 11. This particularly
concerns circuits made on higher permittivity substrates.

Transition from the regime with the spectral gap to simulta-
neous propagation of the bound wave and the first leaky wave
radiating into the surface wave (which has a zero cutoff
frequency) is explained in [6] and [7] in terms of occurrence
of the same number of solutions of the dispersion equation at
all frequencies. However, the same account is not applicable
in the case of the second leaky mode, the presence of which
is possible only above , the nonzero cutoff frequency of
the surface wave. When is crossed toward higher
frequencies and the second leaky mode is considered, the total
number of solutions doubles in comparison with the case when
only the first leaky mode is taken into account. This figure
holds up to the cutoff frequency, above which the total
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Fig. 12. A plot similar to that in Fig. 10, but for a wider slotwidth
w=h = 0:535. (—): 1st and 2nd improper complex. (- - - -): 1st and
2nd improper real.

Fig. 13. A plot similar to that in Fig. 12, but for a slightly wider slotwidth
w=h = 0:552. (—): 1st and 2nd improper complex. (- - - -): 1st and 2nd
improper real.

number of solutions again doubles in comparison with the
number of solutions below this frequency. In principle, the
dispersion equation can provide additional solutions associated
with , , etc., surface modes. Unfortunately, their
cutoff frequencies are very high. Therefore, application of the
slotline at such frequencies would be senseless.

IV. UPPERCUTOFF FREQUENCY OF THEBOUND WAVE

A role that the first and the second leaky waves play on
the slotline has been shown in Section II. Basically, if excited
they limit the frequency band in which only the bound wave

Fig. 14. A plot similar to that in Fig. 13, but for a slotwidth increased to
w=h = 0:6. (—): 1st and 2nd improper complex. (- - - -): 1st and 2nd
improper real.

Fig. 15. A plot similar to that in Fig. 14, but for a very wide slot with
w=h = 0:8. (—): 1st and 2nd improper complex. (- - - -): 1st and 2nd
improper real.

propagates. To avoid the trouble caused by surface leakage,
it is necessary to know the upper frequency cutoff of the
dominant bound wave. In case of a spectral gap, this is given
by in Figs. 2 and 11–14, and denoted hereafter as. When
simultaneous propagation of the bound wave and the first leaky
wave occurs, the upper frequency cutoff is equal to , as
shown in Fig. 15. If the regions of the bound and the second
leaky waves overlap, the cutoff frequency is given by
(e.g., Figs. 2, 10, 11).

The normalized upper frequency cutoff instead of
depending on the relative dimension and permittivity
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Fig. 16. The normalized upper frequency cutoff of the dominant bound wave
determined by the spectral gap(h=�c) and by simultaneous propagation of
the first leaky wave(h=�c1).

is shown in Fig. 16. The figure is based on a set of
data calculated for various and combinations. Their
subsequent manipulation by the least-squares method results
in the closed-form formula

(27)

where

(28)

(29)

(30)

(31)

(32)

are simple functions of . Equations (27)–(32) hold when
and .

The following equation:

(33)

satisfies the condition and controls the boundary
line separating the left pure bound-wave region from the right
region of simultaneous propagation of the bound wave and
the first leaky wave.

Similarly, the normalized frequency instead of
is also plotted in Fig. 16. The formula

(34)

describes . , , , the dependent functions, are as
follows:

(35)

(36)

(37)

Equations (34)–(37) have the same interval of validity as (27).
The condition produces the equation

(38)

Fig. 17. A plot similar to that in Fig. 16, but the normalized upper fre-
quency cutoff of the dominant bound wave(h=�c2) is now determined by
simultaneous propagation of the second leaky wave.

defining the boundary line separating the left pure bound-wave
region from the right region of simultaneous propagation of
the bound and the second leaky waves (see Fig. 17).

The normalized upper frequency cutoff instead of
is also drawn in Fig. 17 and

(39)

where

(40)

(41)

(42)

(43)

(44)

Equations (39)–(44) hold when and lie in the same
intervals as they do for (27). Formulas (27)–(44) can easily be
implemented into CAD. They determine the desired operation
frequency band in which only the bound wave can propagate.

V. CONCLUSIONS

We have reported the discovery of a new previously uniden-
tified leaky wave on the slotline. Its occurrence is a direct
consequence of the multivalued nature of the solution of the
dispersion equation with respect to individual surface waves
supported by a grounded dielectric slab. This new second
leaky wave is associated with leakage into the and

surface waves. Their directions of propagation differ.
We have presented plots of contour lines for the already
known first leaky wave and also for the new second leaky
wave. They confirm the correct value of the angle at which
a particular leaky wave radiates from the slot when both
its propagation and leakage constants are taken into account
in the calculation. Their influence is more expressive for
the second than for the first leaky wave. The second leaky
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wave has greater significance on slotlines with a narrower
slotwidth and made on a higher permittivity substrate. Then
simultaneous propagation of the bound and the second leaky
waves occurs. This fact reduces the usable frequency band
of pure bound-wave propagation. On a slotline with a wider
slotwidth, the role of the first leaky wave is predominant.
Now the second leaky wave exhibits a frequency gap in
which its improper complex solution is nonphysical. However,
above this frequency gap, simultaneous propagation of the
first and second leaky wave is possible. The second leaky
wave brings down the upper cutoff frequency of pure bound-
wave propagation. We have, therefore, presented closed-form
formulas useful for CAD providing this frequency limit. They
facilitate determination of the desired operation frequency
band. Discussion of the dispersion characteristics of the second
leaky wave gives better insight into the mechanism of the
wave processes taking place on the slotline. We believe that
the new effects revealed on the slotline may occur on other
open printed-circuit lines and possess generality encoded in
the multivalued solution of their dispersion equation.
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